

Pergamon *Pergamon Pergamon P* © 1997 Elsevier Science Ltd All rights reserved. Printed in Great Britain $0040-4039/97$ \$17.00 + 0.00

PII: S0040-4039(97)01602-X

[~.Selective C-Glycosidations: Lewis-Acid Mediated Reactions of Carbohydrates with Silyl Ketene Acetals

Thomas G. Minehan and Yoshito Kishi*

Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, MA 02138, U.S.A.

Abstract: Several examples of β-selective C-glycosidation reactions, involving TMSOTf-promoted *addition of sterically hindered silyl ketene acetals to glucosyl and galactosyl acetates, are presented.* © 1997 Elsevier Science Ltd.

In the preceding paper¹ we reported the synthesis of a chromophore model 2 of the multidrug resistance reversing natural product tolyporphin (1). This synthesis contains two key transformations: (1) a double retroaldol/autoxidation reaction to convert an octahydroporphyrin 3 into a tetrahydroporphyrin 4, and (2) a site-specific oxidation of 4 to the chromophore model 2. The octahydroporphyrin 3 was synthesized from monocyclic precursors by using the Eschenmoser sulfide contraction/iminoester cyclization method. In order to extend this route to a synthesis of tolyporphin (1), we need to prepare thiolactam 5, which corresponds to both ring A and ring C of the natural product. Thiolactam 5, which can also be viewed as a C -glycoside, 2 contains two important structural characteristics: a β -oriented C-glycosidic bond and a quaternary center adjacent to the anomeric carbon.

The utility of Lewis-acid promoted nucleophile addition to the anomeric center of carbohydrates for the synthesis of C-glycosides is well documented.³⁻⁶ Due to the stereoelectronic effect, a nucleophile preferentially adds from an axial direction to the oxonium ion generated from a suitable carbohydrate derivative. As a result, α -C-glycosides are the predominant products from glycosidation with carbon nucleophiles, and β -C-glycosides are the products of hydride attack on ketols. An alternative synthesis of β -C-glycosides involves radical reduction of a C.1 methylthioketal.⁷ In this communication, we wish to report a procedure for obtaining β -C-glycosides δ from Lewis-acid mediated C-glycosidation of glycosyl-1-Oacetates with silyl ketene acetals.

In previous work from this laboratory, it was shown that BF_3 OEt₂ promoted addition of allyltrimethylsilane (N-1) to 2,3,4,6-tetrabenzylglucose 1-O-acetate (S-1) or glucose pentaacetate (S-2) gave a 10:1 ratio of α - to β -allylglucopyrans (Table 1, entries 1 and 5).⁴ However, we thought it might be possible to invert the stereochemical outcome of this process by adjusting electronic and/or steric properties of the nucleophile. In connection with the tolyporphin work, silyl ketene acetals (cf. N-4) seemed to be particularly attractive nucleophiles. Thus, we studied the efficiency and stereoselectivity of TMSOTf-promoted reactions of nucleophiles N-2, N-3, and N-4 with substrates S-I~S-4.

As the results summarized in Table 1 indicate, the efficiency of carbon-carbon bond formation between silyl ketene acetals and carbohydrate C. 1 acetates bearing a non-participating group at C.2 in the presence of Lewis acid is generally good (S-I+ N-2~N-4 and S-3 + N-2~N-4). However, lower bond forming efficiency is observed for substrates with a participating group at C.2 (S-1 series vs. S-2 series and S-3 series vs. S-4 series). The poor yield of these latter cases can be attributed to the formation of a by-product arising from attack of the nucleophile at the carbonyl carbon of the C.2 acetate, exemplified by the production of 7 (Scheme 1).

Compared with the widely recognized examples of α -selectivity in C-glycosidation, it is particularly pleasing to see the switch to β -selectivity observed with silyl ketene acetals as nucleophiles. Both γ , γ disubstituted and unsubstituted silyl ketene acetals, which have heightened nucleophilicity relative to simple allylsilanes and enol ethers, display a preference for forming B-C-glycosides. In addition, increasing the steric bulk of the nucleophile at its reacting terminus⁹ results in enhanced β -selectivity (S-1 + N-2 vs. S-1 + N-3 or N-4 and S-3 + N-2 vs. S-3 + N-3 or N-4). Finally, β -selectivity is greatly increased by placing an acetate on the C.2 hydroxyl of the sugar (S-2 series vs. S-1 and S-4 series vs. S-3). This effect is expected on the basis of the well-known neighboring-group participating ability of carbohydrate C.2 esters, and is consistent with the observation shown in Scheme 1.

^aThe substrates used for this study were:

^bThe nucleophiles used for this study were:

^c>10:1 ratios determined from ¹H NMR of purified anomer mixture. Otherwise, ratios determined by weight after preparative TLC separation of individual anomers, dcombined yields of α - and β -anomers by preparative TLC. eMethod A: To a 0.1 M solution of substrate in MeCN at 0° C was added nucleophile (10 eq.) followed by TMSOTf (1 eq.). Method B: To a 0.1 M solution of substrate in MeCN at 0 \degree C was added nucleophile (10 eq.) followed by TMSOTf (1 eq.) and BF3 OEt2 (9 eq.). ^fThe major product was a ca. 1.2:1 mixture of diastereomers at the α position. β No reaction; only starting material recovered.

In conclusion, this methodology should prove useful for the synthesis of β -C-glycosides and related compounds, and its application to a total synthesis of tolyporphin is in progress.

Acknowledgements: We are grateful for financial support from the National Institutes of Health (CA-22215). T.G.M. gratefully thanks Eli Lilly Company for a predoctoral fellowship.

References and Notes.
1. Minehan, T. G.; Ki

- Minehan, T. G.; Kishi, Y. preceding paper.
- 2. For a recent review on C-glycosides in general, see: Levy, D. E.; Tang, C. *The Chemistry of C-Glycosides,* Pergamon Press, Tarrytown, 1995.
- 3. For a recent review on C-glycoside synthesis in general, see: Postema, M. H. D. *C-Glycoside Synthesis,* CRC Press, Inc., Boca Raton, FL, 1995.
- 4. Lewis, M. D.; Cha, K; Kishi, Y. J. *Am. Chem. Soc.* 1982, 104, 4976. The examples shown below are representative in the terms of the efficiency and stereoselectivity of bond formation.

- 5. (a) Stewart, A. O.; Williams, R. M. J. *Am. Chem. Soc.* 1985, *107,* 4289. (b) Kozikowski, A. P.; Sorgi, *K. L. Tetrahedron Lett.* 1982, *23,* 2281. (c) Schmidt, R. R.; Hoffman, M. *Tetrahedron Lett.* 1982, *23,* 409. (d) Hosomi, A; Sakata, Y.; Sakurai, H. *Tetrahedron Lett.* 1984, *25,* 2383.
- 6. B-Selective C-allylation of carbohydrates bearing a C.2 phthalimido group is known: (a) Wei, A.; Haudrechy, A.; Audin, C.; Jun, H.-S.; Haudrechy-Bretel, N.; Kishi, Y. J. *Org. Chem.* 1995, *60,* 2160. (b) Roe, B. A.; Boojamra, C. G.; Griggs, J. L.; Bertozzi, C. R. J. *Org. Chem.* 1996, *61, 6442.*
- 7. Nicolaou, K. C.; McGarry, D. G.; Somers, P. K.; Veale, C. A.; Furst, G. T. J. *Am. Chem. Soc.* 1987, *1(99,* 2504.
- 8. For a recent example of β -selective C-glycosidation by silyl ketene acetals, see: Smoliakova, I. P.; Caple, R.; Gregory, D.; Smit, W. A.; Shashkov, A. S.; Chizhov, *0. S. J. Org. Chem.* 1995, *60,* 1221.
- 9. Attempted C-allylation of S-1 and S-2 with γ -dimethylallytrimethylsilane gave a complex mixture of products, containing only minor amounts of the desired products.
- 10. These compounds were synthesized from methyl α -D-galactopyranose 8 by an 8 step sequence:

Reagents and Conditions:

(a) 1. Bu₂SnO (1 eq.), PhH-azeotrope, 8 h. 2. MPMBr (1 eq.), TBAI (1 eq.), 80 °C, 2.5 h; 52% overall yield. (b) 1. TsCl (1.1 eq.), Et₃N, DMAP, CH₂Cl₂. 2. LiEt₃BH (5 eq.) or LAH (5 eq.), THF, r.t.; 60% overall yield. (c) NaH, imidazole, BnBr, TBAI, THF-DMF (4:1); 92% yield. (d) I. DDQ (1.1 eq.), H₂O, CH₂Cl₂. 2. NaH, imidazole, CS₂, MeI, THF; 94% overall yield. (e) Bu₃SnH (10 eq.), AIBN, PhH; 50%. yield. (f) Ac₂O-AcOH (3:1), H₂SO₄ (0.1 eq); 80% yield. (g) Ac₂O, H₂SO₄ (0.1 eq.); 55% yield.

(Received in USA 24 *June* 1997; *revised* 24 *July* 1997; *accepted 1 August* 1997)